
Nick Kim

12/11/2023

Hyperparameter Tuning for Gradient Boosting
Frameworks

1 Introduction

Experimental design is a crucial part of any statistical experiment, including computer sim-

ulations. To explore the effects of efficient design on a computer experiment, we have exam-

ined three scientific papers and repeated the papers’ experiments with our own methods of

analysis using principles of design discussed in class.

In the computer simulations discussed here, the experiments are the machine learning

models themselves, with the predictive performance of the model serving as the output

and the various hyperparameters serving as the inputs. A common theme throughout all

the papers we examined was an expensive grid search to optimize the model parameters.

However, this framework does not attempt to model or account for the relationships between

the model performance and hyperparameters. We would like to address these shortcomings

in our analysis.

For our project, we keep a few key goals in mind. First of all, we would like to achieve

better predictive performance than what was reported in each of the individual papers.

Secondly, we look to reduce the estimated run time. And lastly, we seek to produce a sys-

tematic framework with which we may continually improve our models performance. As for

our methodology, we incorporated principles of computer experiment design in conjunction

with Gaussian Process (GP) modeling.

In each paper, the authors used a common method: XGBoost (Chen et al. 2016). For a

quick description of the model parameters see (Chen et al. 2018a). In the remainder of the of

our report we discuss each research paper in turn, comparing their experimental design and

results to that of our analysis. Tables and Figures for each paper appear in the Appendix

at the end of our document.

2 Critical Temperatures of Superconductors

The first paper we will analyze is “A Data-Driven Statistical Model for Predicting the Critical

Temperature of a Superconductor”, published in the Journal of Computational Material

Science. The author’s objective in this first paper is to predict at which temperature a

material becomes a superconductor.1 A good use case for modeling this relationship is to

1A superconductor is classified as any material which can transport electric charge with no resistance or

with no energy loss

1

pre-screen various compounds and find their critical temperatures. There is currently no

widely accepted physical theory for the critical temperature of a superconductor, so using a

statistical model is a good alternative to model the behavior.

In the dataset that the author used and provided, the outcome variable is the critical

temperature and the predictor variables are various physical properties of the material,

such as atomic mass, atomic radius, etc. The data has 21,263 observations in total with

82 columns. For their analysis, the author conducted an exhaustive 198-point grid search

over five hyperparameters: learning rate, column subsampling, row subsampling, minimum

nodes, and maximum depth (Table 1). This amounts to taking all possible combinations

of their chosen level settings. For performance evaluation, they used a 25-fold Monte Carlo

cross-validation (CV) using root mean square error (RMSE) as the performance metric. For

each iteration they split the data in two thirds for model fitting and one third for model

evaluation.

In our analysis, we constructed a Maximum Projection Latin Hypercube with 10 data

points (using the MaxPro package) and we used the same evaluation procedure as the author

did. To transform samples from our design to integers, for parameters such as number of trees

and number of leaves, we applied the samples to the inverse CDF of the uniform distribution

and took the ceiling of the resulting values. To transform the continuous parameters from

our design into the appropriate range we simply shifted them by a linear transformation.

We repeated this procedure for all three papers.

Figure 1 shows a comparison of all two-dimensional projections of the design that we

generated and the design used by the author. From the plots we can see the author’s design

is not space filling in all projections, however our design does enjoy good space filling and

projection properties. Some of the projections of the author’s design are absurd, such as the

max depth and min node which project as a line. Although some of the author’s parameters

are uniformly distributed, like maximum depth, this is not the case for all of their parameters,

especially for the continuous parameters like learning rate.

As for the Gaussian Process Model, we used the Matern (5/2) covariance function with

a small noise term added and linear mean functions. We introduce the noise term due to the

fact that parameters like row and column subsampling are inherently random and lead to

different performance evaluation (see tables 2 and 3 for estimated GP parameters). Then we

ran 10 iterations of the EGO algorithm; we can see from that after only a couple iterations,

the model is performing at a lower RMSE than the author’s reported value (figure 2). In the

end we arrived at an entirely different set of parameters than the author did (Table 4). In

this instance we were able to achieve better performance in 1/10th of the approximate run

time for the author’s experiment. We estimated the author’s run time by taking the average

run time on our 12 core desktop computer and multiplying by the number of configurations

the author used.

2

3 Ground State Energies

The second paper we will look at is ”Tree-Based Machine Learning Framework for Predicting

Ground State Energies of Molecules”, published in the Journal of Chemical Physics. The

ground state of a quantum-mechanical system is simply its lowest energy state; in this

paper, all compounds analyzed were organic compounds. A practical application of this is

discovering the timeframe for a pharmaceutical drug to break down in the body. The author’s

data consisted of 16242 observations and 50 columns, simplified from their original data with

approximately 1300 columns via principal component analysis. The data is available at the

author’s GitHub: https://github.com/bhimmetoglu/RoboBohr.

The author’s design in this paper was very similar to what we saw in the first paper,

except the level settings of the parameters are available in the GitHub repository and not

directly in the paper. Additionally, they used early stopping to determine the optimal

number of trees in their final model. They performed a 576-point grid search over several

hyperparameters (Table 5), and for their performance evaluation they used 5-fold CV with

RMSE as the metric. Since the author reported both the 5-fold CV RMSE and the test

set RMSE, we compared our results with the 5-fold CV RMSE since we did not have direct

access to their exact test set.

As for our design, we generated a Maximin Latin Hypercube with 25 data points (LHS

package) and incorporated the number of trees as a parameter in the experiment. Similarly,

we refer to the comparison of the two-dimensional projection plots (Figure 3) and see that

the author’s design does not enjoy space filling properties. One thing to note was that

because they used early stopping we couldn’t directly compare the designs for the number

of trees.

For our GP model we used the same Matern covariance function with small noise term

and linear mean functions (For Parameter Estimates see Table 6 and 7). This time , we ran

the EGO algorithm for 15 iterations (Figure 4). We ran EGO for a few more iterations than

in our first analysis simply due to the smaller run time. Again, we see that the EGO method

is able to achieve better performance than what the author reported in just a few iterations.

From the final model parameters (Table 8), we can see that most of the parameter levels

were quite different; however, it is interesting to note that the minimum nodes and learning

rate parameters were almost the same. In this instance we were able to achieve better

performance in 1/15th of the approximate run time for the author’s experiment.

4 Quantitative Structure-Activity Relationships

The third paper we examined, “Extreme Gradient Boosting as a Method for Quantitative

Structure–Activity Relationships” from the Journal of Chemical Information and Modeling,

concerned building a statistical model for Quantitative Structure-Activity Relationships.

QSAR is a popular technique for predicting pharmaceutical drug effects and side effects.

3

https://github.com/bhimmetoglu/RoboBohr

These models typically help to streamline the drug production process by helping to prioritize

novel compounds in the pre-clinical trial stage based on the model predictions.

The paper is a survey of various methods (e.g., XGBoost, Deep Neural Networks, and

Random Forests) applied to several data sets curated by the pharmaceutical company Merck.

For our experiments we examined the author’s follow up paper which is a pre-print, where

they extend the methods to include LightGBM. LightGBM is Microsoft’s implementation of

XGBoost that is a bit more memory efficient and runs faster. We chose to focus on only one

of the data sets and examined the LightGBM algorithm. The data set we chose to analyze

was the logD 2 data set, where the dependent variable was the logD measurement of various

compounds. In total, the data set had 50,000 rows of data for model fitting and 50,000 rows

of data for model evaluation. In total, there were 8,921 independent variables used to predict

the outcome.

To select the optimal set of parameters for their model, the authors used a sequential grid

search on the following model parameters: number of trees, learning rate, number of leaves,

column subsampling, and row subsampling. To perform a sequential grid search, the authors

first fixed the number of leaves to 32, row subsampling to 0.70, and column subsampling

to 0.70. They then fit and evaluated the model across all combinations of the number of

trees with values (1500,700,350,100) and learning rate with values (0.01,0.02,0.05,0.1). The

optimal set of parameters was found and then they proceeded to grid search for the number

of leaves with values (16,32,64,128,256). Lastly, they grid searched for the row and column

subsampling with values of (0.25,0.50,0.7,1.0). The total number of configurations run was

37 and amounted to using 3 different designs (Figures 5,6, and 7).

For model evaluation, they used 2-fold CV on the training set and then took the param-

eters with the best performance, fit the model to the entire training data set, and reported

the R-squared value on the test set.

To compare, we generated a 15-point Maximum Projection Latin Hypercube with all

parameters within the same parameter ranges designated by the author, except we increased

the number of trees / boosting iterations to be between 1000-1500. We realized early on

that a low number of trees resulted in poor test set performance. To finalize the results,

we modeled the experiment with a Gaussian Process, using a linear mean function and the

Matern 5/2 covariance function with small noise term (Parameter Estimates in Table 9 and

10). The EGO algorithm was run for 15 iterations (Figure 8). The parameters we selected

had the lowest RMSE estimated by the two fold CV, we then fit the model with these

parameters on the entire training set and calculated the R-squared on the test set.

The test sample R-squared we achieved was not higher than what the author reported for

the best parameter configuration suggestion by EGO (Table 11). We stipulate this was due

to only using 2-fold CV to select the best set of hyper parameters. Considering the previous

two papers used 5 and 25 fold CV, it would probably be best to increase the number of folds

to get a more accurate out of sample RMSE estimate. To verify this, we examined the 3

2logD is an important measurement in drug synthesis because it measures the lipophilicity of a drug

4

lowest RMSE parameter configurations and found that one of them did indeed have better

test set R-squared (Table 12).

5 Conclusions

Overall, we have seen that for our first two papers, using formal designs for computer exper-

iments and the EGO algorithm resulted in better performance in a fraction of the estimated

time required for the author’s experiments.

One limitation of the author’s approach is that in practice, one must find the hyperparam-

eter ranges to begin with. In our analysis, we limited ourselves to using the author’s stated

ranges for the parameters. However, in reality, we would need to run some pre-screening

experiments to narrow down the parameter ranges down. In particular, arbitrarily defining

the levels for the parameters and performing a grid search leads to an experiment with poor

space filling and projection properties. Additionally, the EGO method allows for exploration

of parameter levels that were not explored in the initial design. Whereas a grid search only

evaluates the experiment at the initial parameter levels. One consequence of this is that

discretizing continuous parameters leads to overlooking potentially better parameter levels.

Most importantly, grid searching doesn’t provide a framework for modeling the relationship

between the experiment’s configuration and the outcome. In the end there isn’t a clear or

systematic way to proceed after a grid search is complete to try to improve model perfor-

mance. However, design of computer experiments, GP modeling, and the EGO algorithm

provide a systematic way to augment and suggest better configurations.

We now have a systematic framework for optimizing the hyper parameters of gradient

boosting frameworks, but there are of course many potential avenues to further explore

for even more robust models. One possibility is exploring different choices for the mean

and covariance functions in the GP model. Another idea is to implement the q-step ahead

procedure in the EGO algorithm, which could lead to improved run time. More generally, we

could also explore some different designs such as uniform projection design. As a last step

to make a fully systematic approach to hyper parameter selection we need a pre-screening

process to narrow the ranges of the parameter values.

5

6 References

• Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. https://arxiv.

org/abs/1603.02754.

• Chen, T., He, T., Benesty, M., Khotilovich, V., and Tang, Y. (2018a). xgboost:

Extreme Gradient Boosting. R package version 0.6.4.1.

• Hamidieh, K., 2018. A data-driven statistical model for predicting the critical temper-

ature of a superconductor. Computational Materials Science 154, 346-354.

• Himmetoglu, B. Tree based machine learning framework for predicting ground state en-

ergies of molecules, J. Chem. Phys. 145 (13) (2016) 134101, https://doi.org/10.1063/1.4964093,

10.1063/1.4964093.

• Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, Weidong, Ye, Q.; Liu, T.-

Y. LightGBM: A Highly Efficient Gradient Boosting DecisionTree 31st Conference on

Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

• Sheridan, R. P., Liaw, A., & Tudor, M. (2021). Light Gradient Boosting Machine as a

Regression Method for Quantitative Structure-Activity Relationships. arXiv preprint

arXiv:2105.08626.

• Sheridan, R. P., Wang, W. M., Liaw, A., Ma, J., and Gifford, E. M. (2016) Extreme

Gradient Boosting as a Method for Quantitative Structure-Activity Relationships. J.

Chem. Inf. Model. 56 (12), 2353– 2360, DOI: 10.1021/acs.jcim.6b00591

6

7 Appendix

7.1 Paper 1

Parameters Levels

Learning rate 0.010, 0.015, 0.020

Column subsampling 0.25, 0.50, 0.75

Subsample ratio 0.5

Minimum nodes 1, 10

Maximum depth 15, 16,. . . , 25

Table 1: Levels Settings Paper 1

Figure 1: Two Dimensional Projections. Authors Design in Black. Our Design in Red.

7

Trend coefficient

Parameters Estimates

(Intercept) 88.2990

learn rate 1.5318

max depths 0.4895

min node -2.5596

col samples 0.4053

Table 2: Trend Coefficients

Covariance coefficients

Parameters Estimate

theta(learn rate) 0.4553

theta(max depths) 1.8000

theta(min node) 0.1643

theta(col samples) 1.8000

Table 3: Variance estimate: 0.1197317

Figure 2: EGO Progress

8

Papers Results Our Results

Learning rate 0.02 0.01162295

Column subsampling 0.50 0.57

Minimum nodes 1 7

Maximum depth 16 25

RMSE 9.4 9.34

Estimated Time to Run 83 hours 8.5 hours

Table 4: Final Model Parameter Comparison

7.2 Paper 2

Parameters Levels

Learning rate 0.015625, 0.03125, 0.0625

Column subsampling 0.2, 0.4, 0.6

Minimum nodes 2, 6, 8, 10

Maximum depth 2, 6, 8, 16

Regularization term 0, 0.0001, 0.001, 0.01

Table 5: Levels Settings Paper 2

Trend coefficient

Parameters Estimates

(Intercept) 0.2124

learn rate -0.0114

max depths -0.0687

min node -0.0101

col samples 0.0063

gamma -0.0023

boost round -0.0167

Table 6: Trend Coefficients

Covariance coefficients

Parameters Estimate

theta(learn rate) 1.7316

theta(max depths) 0.1184

theta(min node) 1.4453

theta(col samples) 1.9210

theta(gamma) 1.8976

theta(boost round) 1.6360

Table 7: Variance estimate: 0.0001888526

9

Figure 3: Two Dimensional Projections. Authors Design in Black. Our Design in Red.

Figure 4: EGO Progress.

10

Papers Results Our Results

Learning rate 0.0156 0.02868557

Column subsampling 0.40 0.2

Number of trees 600 800

Minimum nodes 10 11

Maximum depth 16 10

Regularization term 0.0 2.158121e-16

RMSE 44.09 41.91088

Estimated Time to Run 2 hours 8 minutes

Table 8: Final Model Comparison

7.3 Paper 3

Figure 5: First Grid Search over Number of Trees and Learning Rate.

11

Figure 6: Second Grid Search over Number of Leaves.

12

Figure 7: Third Grid Search over Row and Column Sub sampling.

Trend coefficient

Parameters Estimates

(Intercept) 0.9140

learn rate 0.0216

bag frac -0.0273

feature frac -0.0012

num leaves -0.0268

num rounds 0.0056

Table 9: Trend Coefficients

Covariance coefficients

Parameters Estimate

theta(learn rate) 0.3812

theta(bag frac) 0.0594

theta(feature frac) 0.3780

theta(num leaves) 0.3670

theta(num rounds) 0.0391

Table 10: Variance estimate: 2.361367e-05

13

Figure 8: EGO Progression. Performance is measured by cross validation on the training

set.

Papers Results Our Results

Learning rate 0.05 0.097

Number of Trees 1500 1350

Column subsampling 1 0.875

Subsample ratio 0.25 0.32

Maximum leaves 64 64

R2 (on test data) 0.82 0.81

RMSE Not reported (0.521**) 0.526

Estimated Time to Run 15.5 Hours 12.5 Hours

Table 11: Final Model Comparison

14

	Introduction
	Critical Temperatures of Superconductors
	Ground State Energies
	Quantitative Structure-Activity Relationships
	Conclusions
	References
	Appendix
	Paper 1
	Paper 2
	Paper 3

