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1 Introduction

Experimental design is a crucial part of any statistical experiment, including computer sim-
ulations. To explore the effects of efficient design on a computer experiment, we have exam-
ined three scientific papers and repeated the papers’ experiments with our own methods of
analysis using principles of design discussed in class.

In the computer simulations discussed here, the experiments are the machine learning
models themselves, with the predictive performance of the model serving as the output
and the various hyperparameters serving as the inputs. A common theme throughout all
the papers we examined was an expensive grid search to optimize the model parameters.
However, this framework does not attempt to model or account for the relationships between
the model performance and hyperparameters. We would like to address these shortcomings
in our analysis.

For our project, we keep a few key goals in mind. First of all, we would like to achieve
better predictive performance than what was reported in each of the individual papers.
Secondly, we look to reduce the estimated run time. And lastly, we seek to produce a sys-
tematic framework with which we may continually improve our models performance. As for
our methodology, we incorporated principles of computer experiment design in conjunction
with Gaussian Process (GP) modeling.

In each paper, the authors used a common method: XGBoost (Chen et al. 2016). For a
quick description of the model parameters see (Chen et al. 2018a). In the remainder of the of
our report we discuss each research paper in turn, comparing their experimental design and
results to that of our analysis. Tables and Figures for each paper appear in the Appendix
at the end of our document.

2 Critical Temperatures of Superconductors

The first paper we will analyze is “A Data-Driven Statistical Model for Predicting the Critical
Temperature of a Superconductor”, published in the Journal of Computational Material
Science. The author’s objective in this first paper is to predict at which temperature a
material becomes a superconductor[] A good use case for modeling this relationship is to

LA superconductor is classified as any material which can transport electric charge with no resistance or
with no energy loss



pre-screen various compounds and find their critical temperatures. There is currently no
widely accepted physical theory for the critical temperature of a superconductor, so using a
statistical model is a good alternative to model the behavior.

In the dataset that the author used and provided, the outcome variable is the critical
temperature and the predictor variables are various physical properties of the material,
such as atomic mass, atomic radius, etc. The data has 21,263 observations in total with
82 columns. For their analysis, the author conducted an exhaustive 198-point grid search
over five hyperparameters: learning rate, column subsampling, row subsampling, minimum
nodes, and maximum depth (Table 1). This amounts to taking all possible combinations
of their chosen level settings. For performance evaluation, they used a 25-fold Monte Carlo
cross-validation (CV) using root mean square error (RMSE) as the performance metric. For
each iteration they split the data in two thirds for model fitting and one third for model
evaluation.

In our analysis, we constructed a Maximum Projection Latin Hypercube with 10 data
points (using the MaxPro package) and we used the same evaluation procedure as the author
did. To transform samples from our design to integers, for parameters such as number of trees
and number of leaves, we applied the samples to the inverse CDF of the uniform distribution
and took the ceiling of the resulting values. To transform the continuous parameters from
our design into the appropriate range we simply shifted them by a linear transformation.
We repeated this procedure for all three papers.

Figure 1 shows a comparison of all two-dimensional projections of the design that we
generated and the design used by the author. From the plots we can see the author’s design
is not space filling in all projections, however our design does enjoy good space filling and
projection properties. Some of the projections of the author’s design are absurd, such as the
max depth and min node which project as a line. Although some of the author’s parameters
are uniformly distributed, like maximum depth, this is not the case for all of their parameters,
especially for the continuous parameters like learning rate.

As for the Gaussian Process Model, we used the Matern (5/2) covariance function with
a small noise term added and linear mean functions. We introduce the noise term due to the
fact that parameters like row and column subsampling are inherently random and lead to
different performance evaluation (see tables 2 and 3 for estimated GP parameters). Then we
ran 10 iterations of the EGO algorithm; we can see from that after only a couple iterations,
the model is performing at a lower RMSE than the author’s reported value (figure 2). In the
end we arrived at an entirely different set of parameters than the author did (Table 4). In
this instance we were able to achieve better performance in 1/10th of the approximate run
time for the author’s experiment. We estimated the author’s run time by taking the average
run time on our 12 core desktop computer and multiplying by the number of configurations
the author used.



3 Ground State Energies

The second paper we will look at is " Tree-Based Machine Learning Framework for Predicting
Ground State Energies of Molecules”, published in the Journal of Chemical Physics. The
ground state of a quantum-mechanical system is simply its lowest energy state; in this
paper, all compounds analyzed were organic compounds. A practical application of this is
discovering the timeframe for a pharmaceutical drug to break down in the body. The author’s
data consisted of 16242 observations and 50 columns, simplified from their original data with
approximately 1300 columns via principal component analysis. The data is available at the
author’s GitHub: https://github.com/bhimmetoglu/RoboBohr.

The author’s design in this paper was very similar to what we saw in the first paper,
except the level settings of the parameters are available in the GitHub repository and not
directly in the paper. Additionally, they used early stopping to determine the optimal
number of trees in their final model. They performed a 576-point grid search over several
hyperparameters (Table 5), and for their performance evaluation they used 5-fold CV with
RMSE as the metric. Since the author reported both the 5-fold CV RMSE and the test
set RMSE, we compared our results with the 5-fold CV RMSE since we did not have direct
access to their exact test set.

As for our design, we generated a Maximin Latin Hypercube with 25 data points (LHS
package) and incorporated the number of trees as a parameter in the experiment. Similarly,
we refer to the comparison of the two-dimensional projection plots (Figure 3) and see that
the author’s design does not enjoy space filling properties. One thing to note was that
because they used early stopping we couldn’t directly compare the designs for the number
of trees.

For our GP model we used the same Matern covariance function with small noise term
and linear mean functions (For Parameter Estimates see Table 6 and 7). This time , we ran
the EGO algorithm for 15 iterations (Figure 4). We ran EGO for a few more iterations than
in our first analysis simply due to the smaller run time. Again, we see that the EGO method
is able to achieve better performance than what the author reported in just a few iterations.

From the final model parameters (Table 8), we can see that most of the parameter levels
were quite different; however, it is interesting to note that the minimum nodes and learning
rate parameters were almost the same. In this instance we were able to achieve better
performance in 1/15th of the approximate run time for the author’s experiment.

4 Quantitative Structure-Activity Relationships

The third paper we examined, “Extreme Gradient Boosting as a Method for Quantitative
Structure—Activity Relationships” from the Journal of Chemical Information and Modeling,
concerned building a statistical model for Quantitative Structure-Activity Relationships.
QSAR is a popular technique for predicting pharmaceutical drug effects and side effects.


https://github.com/bhimmetoglu/RoboBohr

These models typically help to streamline the drug production process by helping to prioritize
novel compounds in the pre-clinical trial stage based on the model predictions.

The paper is a survey of various methods (e.g., XGBoost, Deep Neural Networks, and
Random Forests) applied to several data sets curated by the pharmaceutical company Merck.
For our experiments we examined the author’s follow up paper which is a pre-print, where
they extend the methods to include Light GBM. Light GBM is Microsoft’s implementation of
XGBoost that is a bit more memory efficient and runs faster. We chose to focus on only one
of the data sets and examined the Light GBM algorithm. The data set we chose to analyze
was the logD E] data set, where the dependent variable was the logD measurement of various
compounds. In total, the data set had 50,000 rows of data for model fitting and 50,000 rows
of data for model evaluation. In total, there were 8 921 independent variables used to predict
the outcome.

To select the optimal set of parameters for their model, the authors used a sequential grid
search on the following model parameters: number of trees, learning rate, number of leaves,
column subsampling, and row subsampling. To perform a sequential grid search, the authors
first fixed the number of leaves to 32, row subsampling to 0.70, and column subsampling
to 0.70. They then fit and evaluated the model across all combinations of the number of
trees with values (1500,700,350,100) and learning rate with values (0.01,0.02,0.05,0.1). The
optimal set of parameters was found and then they proceeded to grid search for the number
of leaves with values (16,32,64,128,256). Lastly, they grid searched for the row and column
subsampling with values of (0.25,0.50,0.7,1.0). The total number of configurations run was
37 and amounted to using 3 different designs (Figures 5,6, and 7).

For model evaluation, they used 2-fold CV on the training set and then took the param-
eters with the best performance, fit the model to the entire training data set, and reported
the R-squared value on the test set.

To compare, we generated a 15-point Maximum Projection Latin Hypercube with all
parameters within the same parameter ranges designated by the author, except we increased
the number of trees / boosting iterations to be between 1000-1500. We realized early on
that a low number of trees resulted in poor test set performance. To finalize the results,
we modeled the experiment with a Gaussian Process, using a linear mean function and the
Matern 5/2 covariance function with small noise term (Parameter Estimates in Table 9 and
10). The EGO algorithm was run for 15 iterations (Figure 8). The parameters we selected
had the lowest RMSE estimated by the two fold CV, we then fit the model with these
parameters on the entire training set and calculated the R-squared on the test set.

The test sample R-squared we achieved was not higher than what the author reported for
the best parameter configuration suggestion by EGO (Table 11). We stipulate this was due
to only using 2-fold CV to select the best set of hyper parameters. Considering the previous
two papers used 5 and 25 fold CV, it would probably be best to increase the number of folds
to get a more accurate out of sample RMSE estimate. To verify this, we examined the 3

2logD is an important measurement in drug synthesis because it measures the lipophilicity of a drug



lowest RMSE parameter configurations and found that one of them did indeed have better
test set R-squared (Table 12).

5 Conclusions

Overall, we have seen that for our first two papers, using formal designs for computer exper-
iments and the EGO algorithm resulted in better performance in a fraction of the estimated
time required for the author’s experiments.

One limitation of the author’s approach is that in practice, one must find the hyperparam-
eter ranges to begin with. In our analysis, we limited ourselves to using the author’s stated
ranges for the parameters. However, in reality, we would need to run some pre-screening
experiments to narrow down the parameter ranges down. In particular, arbitrarily defining
the levels for the parameters and performing a grid search leads to an experiment with poor
space filling and projection properties. Additionally, the EGO method allows for exploration
of parameter levels that were not explored in the initial design. Whereas a grid search only
evaluates the experiment at the initial parameter levels. One consequence of this is that
discretizing continuous parameters leads to overlooking potentially better parameter levels.
Most importantly, grid searching doesn’t provide a framework for modeling the relationship
between the experiment’s configuration and the outcome. In the end there isn’t a clear or
systematic way to proceed after a grid search is complete to try to improve model perfor-
mance. However, design of computer experiments, GP modeling, and the EGO algorithm
provide a systematic way to augment and suggest better configurations.

We now have a systematic framework for optimizing the hyper parameters of gradient
boosting frameworks, but there are of course many potential avenues to further explore
for even more robust models. One possibility is exploring different choices for the mean
and covariance functions in the GP model. Another idea is to implement the g-step ahead
procedure in the EGO algorithm, which could lead to improved run time. More generally, we
could also explore some different designs such as uniform projection design. As a last step
to make a fully systematic approach to hyper parameter selection we need a pre-screening
process to narrow the ranges of the parameter values.
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7 Appendix

7.1 Paper 1
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Figure 1: Two Dimensional Projections. Authors Design in Black. Our Design in Red.




Trend coefficient

Covariance coeflicients

Parameters Estimates
(Intercept)  88.2990
learn rate 1.5318
max depths 0.4895
min node -2.5596
col samples 0.4053

Parameters Estimate
theta(learn rate) 0.4553
theta(max depths)  1.8000
theta(min node) 0.1643
theta(col samples)  1.8000

Table 3: Vari timate: 0.1197317
Table 2: Trend Coefficients able ariance estimate

RMSE and EGO Iteration

RMSE
930 935 940 945

EGO lteration

Figure 2: EGO Progress



Papers Results | Our Results
Learning rate 0.02 0.01162295
Column subsampling 0.50 0.57
Minimum nodes 1 7
Maximum depth 16 25
RMSE 9.4 9.34
Estimated Time to Run 83 hours 8.5 hours

Table 4: Final Model Parameter Comparison

7.2 Paper 2
Parameters Levels
Learning rate 0.015625, 0.03125, 0.0625
Column subsampling 0.2, 0.4, 0.6
Minimum nodes 2,6, 8,10
Maximum depth 2,6, 8,16
Regularization term 0, 0.0001, 0.001, 0.01

Table 5: Levels Settings Paper 2

Trend coeflicient ) )
Covariance coeflicients

Parameters Estimates
(Intercept) 0.2124
learn rate -0.0114
max depths  -0.0687
min node -0.0101
col samples 0.0063
gamma -0.0023
boost round  -0.0167

Parameters Estimate
theta(learn rate) 1.7316
theta(max depths)  0.1184
theta(min node) 1.4453
theta(col samples)  1.9210
theta(gamma) 1.8976
theta(boost round)  1.6360

Table 6: Trend Coefficients Table 7: Variance estimate: 0.0001888526
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7.3 Paper 3
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Our Results

Learning rate
Column subsampling
Number of trees
Minimum nodes
Maximum depth
Regularization term
RMSE

Estimated Time to Run

0.0156
0.40
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2 hours
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800
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Table 8: Final Model Comparison
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Figure 6: Second Grid Search over Number of Leaves.
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Figure 7: Third Grid Search over Row and Column Sub sampling.

Trend coefficient ) )
Covariance coeflicients

Parameters Estimates
(Intercept) 0.9140
learn rate 0.0216
bag frac -0.0273
feature frac ~ -0.0012
num leaves -0.0268
num rounds 0.0056

Parameters Estimate
theta(learn rate) 0.3812
theta(bag frac) 0.0594
theta(feature frac)  0.3780
theta(num leaves)  0.3670
theta(num rounds)  0.0391

Table 10: i i 1 2.361 -
Table 9: Trend Coefficients able 10: Variance estimate: 2.361367e-05
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Figure 8: EGO Progression. Performance is measured by cross validation on the training
set.
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Learning rate
Number of Trees
Column subsampling
Subsample ratio
Maximum leaves
R? (on test data)
RMSE
Estimated Time to Run

0.05
1500
1
0.25
64
0.82
Not reported (0.521%*)
15.5 Hours

0.097
1350
0.875
0.32
64
0.81
0.526
12.5 Hours

Table 11: Final Model Comparison
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